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Performance on difficult tasks such as forecasting generally benefits from the “wisdom
of crowds,” but communication among individuals can harm performance by reducing
independent information. Collective accuracy can be improved by weighting by
expertise, but it may also be naturally improved within communicating groups by
the tendency of experts to be more resistant to peer information, effectively upweight-
ing their contributions. To elucidate precisely how experts resist peer information, and
the downstream effects of that on individual and collective accuracy, we construct a
set of event-prediction challenges and randomize the exchange of both numerical
and textual information among individuals. This allows us to estimate a continuous
nonlinear response function connecting signals and predictions, which we show is
consistent with a novel Bayesian updating framework which unifies the tendencies of
experts to discount all peer information, as well as information more distant from their
priors. We show via our textual treatment that experts are similarly less responsive to
textual information, where nonexperts are more affected and benefited overall, but
experts are helped by the highest quality text. We apply our Bayesian framework to
show that the collective benefits of expert nonresponsivity are highly sensitive to the
variance in expertise, but that individual predictions can be “corrected” back toward
their unobserved pretreatment states, boosting the collective accuracy of nonexperts
close to the level of experts, and restoring much of the accuracy lost due to intragroup
communication. We conclude by examining potential avenues for further improving
collective accuracy by structuring communication within groups.

Keywords: collective intelligence, forecasting, social influence, expertise, reasoning

Supplemental materials: https://doi.org/10.1037/dec0000204.supp

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Nicholas Beauchamp https://orcid.org/0000-0003-
0515-2479
Sarah Shugars https://orcid.org/0000-0002-1917-4313
This research is based upon work supported in part by the

Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA),
via 2017-17061500006 and 2017-17071900005. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for

governmental purposes notwithstanding any copyright
annotation therein.
All authors significantly contributed to conceptualization,

design, analysis, writing, and editing. Nicholas Beauchamp
played lead role in data analysis, visualization, and writing;
Sarah Shugars andBriony Swire-Thompson played lead roles in
software, participant recruitment, and data management; and
David Lazer played lead role in funding acquisition, resources,
and project management.
Correspondence concerning this article should be

addressed to Nicholas Beauchamp, Network Science
Institute, Northeastern University, Boston, MA 02115,
United States. Email: n.beauchamp@northeastern.edu

1

Decision
© 2023 American Psychological Association
ISSN: 2325-9965 https://doi.org/10.1037/dec0000204

https://doi.org/10.1037/dec0000204.supp
https://orcid.org/0000-0003-0515-2479
https://orcid.org/0000-0003-0515-2479
https://orcid.org/0000-0002-1917-4313
mailto:n.beauchamp@northeastern.edu
https://doi.org/10.1037/dec0000204


The superiority of expertise was somewhat
diminished a century ago by the discovery that
an aggregate of nonexperts can, in many circum-
stances, outperform even the most skilled individ-
ual via the “wisdom of the crowd” (Galton, 1907;
Hong & Page, 2004; Page, 2018). But the impor-
tance of expertise has undergone a recent resur-
gence: On the one hand, givingmoreweight to the
contributions of experts can outperform a generic
crowd (Budescu & Chen, 2015; Mannes et al.,
2014), and in somecases, only givingweight to the
top experts can be optimal (Mellers et al., 2015;
Tetlock & Gardner, 2016). On the other hand, a
crowdoften hasweaknesses in real-world settings:
in particular, individuals tend to communicate
extensively within groups (Yaniv, 2004), and
this social influence may reduce collective intel-
ligence in various ways. Shared information can
induce copying and thereby reduce the amount
of independent information in a group (Golub &
Jackson, 2010; Lorenz et al., 2011; Mercier &
Landemore, 2012; Page, 2018; Patry, 2008;
Sommers, 2006; Sunstein & Hastie, 2015;
Surowiecki, 2004; Yaniv, 2004); it can lead to
opinion convergence toward suboptimal solu-
tions due to information cascades, particularly in
smaller groups (Golub& Jackson, 2010; King&
Cowlishaw, 2007; Lorenz et al., 2011); and it
can reduce overall diversity of opinion (Hong &
Page, 2004; Page, 2018).
But alongside the rise in the importance of

expertise has also come increasing awareness that
identifying experts for novel or complex real-
world tasks can be a major challenge (Budescu &
Chen, 2015; Luo et al., 2018; Madirolas & de
Polavieja, 2015; Mannes et al., 2014; Tetlock &
Gardner, 2016), while self-assessment is notori-
ously unreliable (Atir et al., 2015; Dunning et al.,
2003; Kruger & Dunning, 1999; Madirolas &
de Polavieja, 2015; Schlösser et al., 2013). Nor
are the drawbacks of communication necessarily
as large as once thought: providing participants
with better information can boost collective accu-
racy (Jayles et al., 2017;King&Cowlishaw, 2007;
King et al., 2011;Luo et al., 2018;Toyokawaet al.,
2019), in part by reducing sensitivity tomisleading
information or outlier opinions (Kao et al., 2018;
King et al., 2011). Furthermore, the harm from
diversity reductionmay not be as great as had been
supposed (Jayles et al., 2017; Nobre & Fontanari,
2020). Indeed, recent work has suggested that
under some circumstances, one can have the best
of both expertise and communicating crowds:

since experts tend to be more resistant to social
influence (Cheek & Norem, 2017; Jayles et al.,
2017; Kaustia et al., 2008; Luo et al., 2018;
Madirolas & de Polavieja, 2015; Tversky &
Kahneman, 1974; Welsh et al., 2014; Yaniv,
2004), this resistance can be used as a potential
proxy for expertise and may even serve as a
natural upweighting of expert opinion within
communicating crowds due to nonexperts being
more persuaded by experts than vice versa (Becker
et al., 2017).
However, the circumstances under which

expertise can naturally boost the collective accu-
racy of a communicating crowd remain ill-defined,
in part because the mechanisms by which experts
resist persuasion remain poorly understood. In
order to better understand how communication
and expertise interact to affect the wisdom of
the crowd, we constructed an experiment using
a set of complex real-world event-prediction pro-
blems and manipulated the exchange of both
numerical and textual information between sub-
jects. Our experiment was a 2 × 2 within-subject
design with two independently randomized treat-
ments: with 50% probability per prediction task,
a subject was shown a single randomly selected
numeric prediction made by one of their peers
prior to making their own prediction; and inde-
pendently,with 50%probability per task, a subject
was shown a peer’s written reason justifying their
prediction. The effects of these treatments and the
interaction between those effects and expertise
were then assessed on prediction values, on pre-
diction accuracy, and on aggregate accuracy.
Our design allows us to replicate and synthesize

a number of previous findings, as well as demon-
strating a number of new ones. Our continuous-
valued prediction task allows us to measure the
precise response curve relating peer information to
the predictions made by receivers. This response
curve shows thepreviouslyestablisheddiminished
responsivity of experts, as well as their tendency
to more aggressively discount information in pro-
portion to its distance from their prior belief. We
present a new model that combines both of these
effects in a single Bayesian framework and show
that the theoretical response curves closely match
the empirically derived ones. We use this frame-
work to show via an analytic example and also a
simulation how group accuracy can be either
helped or harmed by communication. We show
that the benefits and harms are highly sensitive to
the variance in expert responsivity, to the size of
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the group, and to the number of exchanges in the
group. We then use our Bayesian framework to
develop a new method to “correct” predictions
affected by peer information, shifting them back
toward the (entirely unobserved) prior predictions.
We find that this correction benefits nonexpert
groups more than expert groups, that it is compa-
rable to benefits from traditional reweighting pro-
cedures, and that it raises the accuracyof nonexpert
groups to the level of relative experts, primarily
by undoing the damages to group accuracy due to
intragroup communication.
Our text treatment shows for the first time that

the effects of the most common form of commu-
nication, linguistic, are similar to those for numeric
information, including the sensitivity of those
effects to the expertise of the receiver. It is often
assumed that experts discount more distant infor-
mation due to its lower quality. However, with
numeric information, it is impossible todistinguish
a generic bias toward one’s prior from a judgment
based on the inherent quality of a piece of infor-
mation, since those two are correlated. Our textual
treatments allowus tomeasure informationquality
directly, both via peer judgments, and via features
such as containing numbers orURLs.Wefind that
nonexperts are helped by peer text more than
experts, but that experts are indeed helped, but
only by the highest quality information. Thus,
experts appear to be both more confident in their
own beliefs, and more likely to discount low-
quality numerical or textual information. These
two biases can benefit not just experts individu-
ally, but also the group as a whole, albeit in ways
that are highly sensitive to group size, quantity
of communication, and variance in expertise.
Taken as a whole, we provide a new, unified

Bayesian framework incorporating these two
expertise effects; show for the first time that these
effects operate for text as well as numbers, and
that the distance-based effect is likely due to
information quality; and demonstrate how these
effects may or may not benefit the group, as well
as how they can been boosted by “correcting”
peer-affected predictions after the fact. Our re-
sults suggest new avenues for shaping the flow of
peer information to boost the wisdom of the
crowd, as we discuss in the conclusion.

Method

To evaluate the impact of both numerical and
textual social influence on individuals and on

collective intelligence, we constructed a series
of real-world event-prediction tasks. Each subject
was presented with up to 16 questions about
future events randomly ordered, with four ques-
tions in each of four topic areas: politics, enter-
tainment, economics, and natural events such as
diseases or weather. Questions were brief and on
continuous scales, such as “What will be the
approval rate for the Russian government at the
end of January” or “What will be the value of
one bitcoin in USD at 11:59 p.m. on the 21st of
January” (see Table S6, for the full list). Each
prediction event resolved between 5 days and
5 weeks into the future. Subjects were asked to
provide their best numerical prediction for each
question; provide subjective judgments of their
confidence in their prediction and expertise on the
topic; and 50% of the time they were also asked
to provide a brief textual justification or “reason”
for their prediction. Due to the voluntary nature
ofmost of our subjects, subjectswere not required
to answer all questions, with an average of 7.8
questions answered per subject. After making
their predictions, they were asked a series of
demographic questions, a six question political
knowledge quiz, and a three-question Cognitive
Reflection Test (Frederick, 2005) to measure
basic reasoning ability.
Our experiment was a 2 × 2 within-subject

design with two independently randomized treat-
ments: with 50%probability per prediction task, a
subject was shown a single randomly selected
numeric prediction made by one of their peers
prior to making their own prediction (treatment)
or not (control); and independently, with 50%
probability per task, a subject was shown a peer’s
written reason justifying their prediction (treat-
ment) or not (control). Reasons were delivered
independent of the numeric predictions but were
almost always written in a way that could be
sensibly interpreted even without an associated
number. Numeric treatments were selected by
drawing random values from a uniform distribu-
tion covering all but the highest and lowest 5% of
existing predictions; this was designed to omit
noncompliant predictions while preserving the
mean and variance of the distribution and to also
provide a higher density of extreme predictions in
order to better measure tapering effects as dis-
cussed below. Unlike some previous work, we
did not elicit predictions prior to presenting the
treatment, which is consistent with how almost
all real-world peer interactions occur; as we will
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show, preelicitation is not necessary for assessing
treatment effects. No identifying characteristics
of the sender were included with the treatment,
and there was no mechanism for interaction or
repeated exchanges,merely the one-time delivery
of a number and/or piece of short text.
Our primary outcomes were the individual’s

prediction value; the accuracy of that prediction
as measured by the squared error between a pre-
diction and the true outcome after standardizing by
question; and the squared error of the per-question
mean prediction of various subsets of subjects,
such as those with higher or lower expertise. For
textual treatments, we constructed a number of
measures of “quality,” using both natural language
processing (NLP) methods, and by asking a ran-
domly selected subset of recipients to rate the
quality of the text they read and aggregating those
ratings for each text item.
Our study had 804 unique participants: 494

unpaid volunteers recruited from Reddit and
Craigslist, and 310 paid Amazon Mechanical
Turk workers. All participants provided informed
consent, and our study was approved by the
institutional review board (IRB) at Northeastern
University (IRB No. 13-03-09). Eighty-four per-
centage of predictions were made by volunteers,
and therewas no statistically significant difference
in accuracy between the two subject pools, nor
any significant interactions between pool type and
treatment effects (Table S5). The final sample was
65%male with amean age of 33 (SD= 10). Prior
to the analysis, the top and bottom 1% outliers
were removed as being mainly noncompliant,
and predictions were standardized by question
to mean 0 and standard deviation 1 before all
analysis; prediction valueswere not logged because
distributions were approximately normal in most
cases (Kao et al., 2018; Lorenz et al., 2011; Luo
et al., 2018).
Our key mediating variable is subject exper-

tise. “Expertise” can encompass many possible
concepts and has been operationalized into
several measures in the literature (Attali et al.,
2020; Becker et al., 2017; Dunning et al., 2003;
Guilbeault&Centola, 2020;Tversky&Kahneman,
1974). Following the literature, our core definition
of “expertise” is domain-specific skill. To capture
this direct measure of ability, we assessed each
subject’s accuracy in the first 50%of the (randomly
ordered) prediction questions, which allows us
to use this measure of expertise as a covariate in
the second half of responses.

We also tested a number of alternative mea-
sures of expertise. To measure self-judged abil-
ity, we asked subjects their degree of confidence
in each question as well as their self-assessed
“expertise” in that topic area. And as additional
objective measures, we included a three-question
reasoning quiz, education level question, and a
political knowledge test. As other have found, we
observed that self-judged “expertise” was in fact
negatively correlated with accuracy (β = –0.17,
p < .001; Table S2: M1), possibly due to the
Dunning–Kruger effect (Dunning et al., 2003;
Nuhfer et al., 2016, 2017; Schlösser et al., 2013).
And while “confidence” was significantly associ-
ated with accuracy (β = 0.11, p < .001, Table S2:
M1), this effect disappears when including
question-level random effects, suggesting that
“confidence” measures a question-level quality
(such as the ease of the problem) rather than a
subject-level quality (such as expertise or skill).
Similarly, neither education nor political knowl-
edge was associated with prediction accuracy
when controlling for other features (Table S5).
However, both reasoning ability and our domain-
specific measure of “expertise” were significantly
predictive of accuracy in the second half of ques-
tions answered (Table S2, Models 4 vs. 7). We
hereafter use this domain-specific accuracy mea-
sure as our core expertisemeasure, but also discuss
reasoning ability in places.

Results

Peer Effects on Individual Predictions

Numeric Treatments

Previouswork has theorized that responsivity to
peer information varies with both receiver exper-
tise, and the distance between the receiver’s origi-
nal prediction and the peer prediction that they are
shown (Becker et al., 2017; Cheek & Norem,
2017; Jayles et al., 2017; Kaustia et al., 2008;
Luo et al., 2018; Madirolas & de Polavieja, 2015;
Welsh et al., 2014; Yaniv, 2004). Most previous
theoretical models of this process have followed
some variant of the DeGroot framework, where
receivers react to information in amechanisticway
ungrounded in any specific Bayesian information
processing framework. While the DeGroot model
has the advantage of generality, being consis-
tent with many different forms of information
updating, these models lack specificity regarding
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precisely how the receiver’s responsivity varies
with expertise and the observed signal. We
instead propose here a simple Bayesian updat-
ing framework, which incorporates in a single
functional form the reduced responsivity of
experts to all signals; the reduced responsivity
of every receiver to signals more distant from
the receiver’s belief; and the tendency for ex-
perts to discount distant signals more severely
than nonexperts. Our model does not provide a
rational basis for either the reduced responsivity
of experts or the reduced responsivity with
distance; rather, it illustrates how these two
empirically demonstrated psychological ten-
dencies may operate within a broader Bayesian
updating framework.
In the standard Bayesian framework, if a

receiver has a normal prior belief about the truth
μwith expected value α and uncertainty (variance)
σ21, and observes a signal β to which they attribute
normally distributed uncertainty σ2, their posterior
belief will be:

f ðμjα, βÞ ∝ 1ffiffiffiffiffiffiffiffiffiffi
σ21σ22

p exp

�
−
ðμ − αÞ2
2σ21

−
ðμ − βÞ2
2σ22

�

(1)

After some algebraic manipulation, the recei-
ver’s updated expectation regarding the position
of the truth μ is therefore the average of α and β,
weighted by σ21 and σ22:

E½μjα, β� = σ22α + σ21β
σ21 + σ22

(2)

The uncertainty assigned by the receiver to
their prior belief α, σ21, and the uncertainty
assigned by them to the observed signal β,
σ22, can account for different aspects of expert
responsivity. (a) To account for the reduced
overall responsivity of experts to signals, we
hypothesize that experts are more resistant to
external signals because they are more confi-
dent in their own prior: that is, they will have
a relatively lower σ21. (b) To account for the
reduced responsivity of everyone to more dis-
tant signals (which is empiricallymotivated and
may not be rational), we hypothesize that σ22,
the uncertainty or discounting assigned to the
observed signal β, is proportional to the distance
between α and β; most simply, σ22 = γðα − βÞ2 .
This yields:

E½μjα, β� = γðα − βÞ2α + σ21β
σ21 + γðα − βÞ2 (3)

(c) Since γ is just a proportionality constant, we
can also account for experts discounting distant
signals more aggressively if γ is relatively higher
for experts. Two illustrative examples of this
response function are shown in Figure 1 (inset):
The expert’s response curve (purple) has lower
σ21 and higher γ, while the nonexpert curve (blue)
has higher σ21 and lower γ.
To test how well our empirical data match the

response function postulated in Equation 3, we
begin with a pooled model: After standardizing
all predictions by question, we regress each sub-
ject’s posttreatment prediction on their received
peer prediction value, using a cubic polynomial
to capture the tapering effect of signals with
distance. Although some previous work has
assumed it to be necessary to measure pretreat-
ment positions in order to estimate treatment
effects (Becker et al., 2017, 2019; Jayles et al.,
2017; Kao et al., 2018; King&Cowlishaw, 2007;
King et al., 2011; Luo et al., 2018; Nobre &
Fontanari, 2020; Toyokawa et al., 2019), this is
in fact not necessary: as Figure 1 (main, blue line)
shows clearly, predictions vary linearly with
signals with tapering effects for the most distant
signals. In the cubic polynomial regression, we
find the linear treatment effect is approximately
one-third the anchor value (β = 0.33, p < .001;
Table S1:M1), that is, for each standard deviation
increase in anchor size, the prediction is increased
by one-third of a standard deviation. This is
consistent with previous work (Cheek &
Norem, 2017; Jayles et al., 2017; Mavrodiev et
al., 2013; Mussweiler & Strack, 2000; Yaniv,
2004). Also consistent with that work, we find
that this linear effect tapers offwith distance (cubic
β = –0.02, p = .015; Table S1: M1), with the
maximum effect topping out at approximately
two-thirds of a standard deviation from the group
mean (Kao et al., 2018).
As Figure 1 (inset) shows, the functional form

in Figure 1 (main) closely resembles our Bayes-
ian functional form. To test whether our empiri-
cal response function varies with expertise, we
divide our pool into higher expertise “experts”
and lower expertise “nonexperts” and estimate
models separately for these two groups. To
capture our domain-specific measure of exper-
tise, we assess subject performance in the first
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50%of questions answered and then estimate the
polynomial model separately for the high and
low groups using the second 50% of questions
answered. Figure 1 (main) shows the curves for
nonexperts (red) and experts (green), closely
resembling the functional forms illustrated in
the inset. The polynomial regression shows that
the linear persuasive effect is considerably stron-
ger for the low-expertise group than the high
(high β = 0.230; low β = 0.352; both p < .001),
and that the tapering effect is significant only for
the high-expertise forecasters (cubic effect for
high, p = .027; for low p = .360).

Because this dichotomization analysis reduces
the available information inherent in our continu-
ousmeasure of expertise andmakes statistical tests
of differencedifficult (MacCallumet al., 2002),we
additionally interact expertise with anchor values,
using only data from the second 50% of questions
answered. We find a significant negative interac-
tion (β = –0.113, p < .001; Table S1: M5). This
provides additional statistical support for the the-
ory that the effect of the anchor value diminishes
with expertise. These results are consistent with
previous findings that experts are less affected
by information overall and that everyone is less
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Figure 1
The Relationship Between Anchor Values and Prediction Values, for Different Levels of Receiver
Expertise, in Data (Main) and Theory (Inset)

Note. Main: Response curves of subject predictions as a function of peer information signals. Blue dots: all
subjects. Steep red line: cubic fit for low-expertise subjects; middle blue line: all subjects; flatter green line: high-
expertise subjects. Inset: Illustrative response curves based on Equation 3, where α = 0 and {σ21, γ}. equal to {1,2}
(green, experts) versus {2,1} (red, nonexperts). See the online article for the color version of this figure.
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affected by information that is inconsistent with
their existing beliefs. However, our continuous-
valued treatments allow us to measure precise
empirical response curves for different levels
of expertise. These empirical response curves
closely match the curves generated by our
Bayesian model in Equation 3, where experts
have lower σ21 (greater self-confidence) and higher
γ (higher discounting with distance).

Text Treatments

Although the vast proportion of human com-
munication is linguistic or textual, most previous
workon themediating role of expertisehas focused
on purely numerical communication (Cheek &
Norem, 2017; Jayles et al., 2017; Kaustia et al.,
2008; Luo et al., 2018; Madirolas & de Polavieja,
2015;Welsh et al., 2014; Yaniv, 2004), or at most,
stylized categorical signals (Becker et al., 2019;
Guilbeault et al., 2018). We have shown that
experts are less affected by numerical peer infor-
mation because they are more confident in their
own beliefs overall and also that they more steeply
discount inconsistent signals.Althoughwehavefit
these two psychological features into a broadly
Bayesian framework, this does not explain the
origins of these tendencies. It is often hypothesized
that experts are less affected by peer information
because they are more sensitive to information
quality, but with numerical information, it is
impossible to distinguish quality from distance,
since experts’ prior beliefs will in general be
closer to the truth. However, text allows us to
measure quality directly, and directly determine
the role that information quality plays in expert
discounting of peer information.
Our first numerical result is that experts are in

general less affected by peer information. To test
this with our text treatments, we hypothesized
that the effect of a reason should be similar to the
effect of the numerical prediction made by the
same individual whowrote the reason, even if the
numerical prediction is not seen: A high predic-
tion will have a reason arguing for a relatively
high value and vice versa. If textual effects are not
just coarsely in the same direction as the anchor
but also of similar magnitude, then by analogy
with numeric effects, we would expect the per-
suasive effect of the latent, unseen anchor value to
be weaker for more expert subjects. To test this,
we first regressed each receiver’s prediction on
the unseen prediction made by the writer of the

text they viewed and found a significant positive
effect (β = 0.07, p = .002; Table S4), about one-
quarter the size of seeing a numerical prediction
directly. This effect was also not driven by the
prediction value itself being included in
the reason: Only 6% of reasons included the
literal prediction and results are unchanged
when those are excluded. This result in itself
is notable, as there have been few studies to our
knowledge to show quantitative variation in
textual effects that are well-predicted by unre-
vealed features of the writer (here, the writer’s
numerical prediction).
To test whether this text effect is moderated by

expertise, we again subdivided by high- and low-
expertise subjects and found that the effect holds
only for low-expertise subjects (high: β= 0.06,p=
.197; low: β = 0.15, p = .002). Similarly, inter-
acting expertise with the (unseen) text-associated
anchor value also shows a significant negative
interaction (β = –0.064, p = .04). Thus, low-
expertise users aremore affected by reasons, just
as they are more affected by numerical signals.
In addition to the overall lower effect on experts,

our numerical model also showed that experts
discount more distant signals more aggressively
than nonexperts. One hypothesis is that this is
because experts are better able to judge informa-
tion quality. Although with numerical signals, we
cannot distinguish information quality from dis-
tance, with text we can measure information qual-
ity directly. To do this, we asked a subset of
receivers to rate the quality of the reasons they
read. Since using the receiver’s own rating as a
predictor would open the door to misleading
reverse causation (e.g., if more accurate subjects
tend to rate reasons more highly), we instead use
for each reason themean rating of all subjects who
saw and rated that reason. Since on average only
2–3 subjects rated each reason, we include all
ratings in the analysis below, but if we exclude
the target receiver’s rating, our results are slightly
weaker but substantively the same. The quality of
reasons variedwidely, though even theworst-rated
reasons were generally compliant and well-in-
tended. Highly rated reasons often contained
URLs or numbers, such as “https://earthquake
.usgs.gov/earthquakes/browse/stats.php pro-
vides statistic about earthquakes” or “The Shape
of Water was nominated 12 times, compared to
previous years of La La Land which was nomi-
nated 11 times and won 5 times.” By contrast,
the lowest rated reasons were generally less
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informative, e.g., “Just a guess since I have no
idea regarding the politics of the country” or
“Trump real clear politics may have both posi-
tive and negative feedbacks.” Regressing pre-
dictions made by those treated with a reason on
the interaction between the unseen reason-
associated anchor value and the quality score,
we find that only higher quality reasons have a
persuasive effect. Dichotomizing by expertise,
though, we find that this only holds for high-
expertise subjects (Table S4, Models 6–7). For
experts, low-quality reasons have little to no
effect while high-quality reasons have effects
in the expected direction, whereas for nonex-
perts there is no differential effect. A three-way
interaction (Table S4: M8) also shows the same
moderation, where higher ratings and expertise
intensify the effects of a reason. As a robustness
check, we also reran these analyses removing the
target receiver’s own rating fromthemean, andour
results, though slightly weakened due to removing
many ratings, were substantively the same. So just
as with numerical communication, low-expertise
subjects are broadly affected by all forms of textual
communication, but high-expertise subjects are
much more selective, and only affected by high-
quality information. Our results show that this
selectivity seems to be a general feature of exper-
tise, holding for both numerical and textual
communication, and our textual results provide

evidence that this selectivity is indeed due to
greater sensitivity to information quality.

Peer Effects on Individual Accuracy

While we have established how expertise med-
iates the effects of peer communication on the
receiver’s predictions, of more practical impor-
tance is the effect on the accuracy of those pre-
dictions. However, the effects of communication
on prediction values do not directly translate to
accuracy: Because lower expertise subjects are in
general farther from both the truth and the group
mean than high-expertise subjects, a random
exchange of predictions should benefit individual
low-expertise subjects more than higher expertise
subjects. However, if experts are more resistant to
low-quality information, the higher quality infor-
mation they do consider may result in comparably
higher accuracy for those subjects.
Todeterminehowexpertisemediates the effects

of numerical and textual information on accuracy,
we first regress accuracy (squared error, reverse-
coded hereafter so that higher is better) on anchor
and reason treatments, question order, confidence,
self-assessed expertise, question order, and time
taken (Table S2). We find that in general indivi-
duals do benefit from seeing a peer’s a prediction
(p < .001), and when we split our sample by
higher and lower expertise users (Figure 2), the
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Figure 2
Ordinary Least Squares Regression of Individual Accuracy on Treatments
and Other Contributory Factors Using High/Low Expertise Split Sample,
Where Expertise Is Determined From the First 50% of Predictions Made
and the Model Is Fit on the Second 50%

Time Taken

'Expertise'

Confidence

Reason Requested

Reason Shown

Question Order

Anchor Shown

−0.5 0.0 0.5

Note. Top, blue: High-expertise. Bottom, red: Low-expertise. “Expertise” is self-
judged; “Reason Shown” is whether a subject saw a reason, while “Reason Requested”
is whether they were asked to provide a reason (see Table S2). See the online article for
the color version of this figure.
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low-expertise (red) users benefit slightly more
from seeing a peer’s anchor value than the high-
expertise (blue). Similarly,when it comes toseeing
a peer’s reason, the lower expertise subjects
again benefit more than the more expert subjects
(Table S2: low: β= 0.40, p= .007; high: β= 0.10,
p = .475). When we interact either expertise or
reasoning ability with the numerical and textual
treatments, all four interactions are negative,
although each is below traditional statistical sig-
nificance levels (see Table S2). Considered as a
whole, these results support previous work show-
ing that the benefits of peer information diminish
with expertise (Cheek & Norem, 2017; Jayles
et al., 2017; Kaustia et al., 2008; Luo et al.,
2018; Madirolas & de Polavieja, 2015; Welsh
et al., 2014; Yaniv, 2004).
This overall decline in benefit with expertise,

however, does not answer whether this is due to
experts being particularly resistant to poor infor-
mation, or simply due to the fact that those with
less accurate predictions will in expectation ben-
efit more from communication even when every-
one is equally receptive. But while we have no
way of measuring numerical information quality
independent of accuracy, we can again directly
measure textual information quality. Using our
peer-rating of reason quality, we found that the
higher the mean reason rating was for those who
received a reason, the higher the accuracy of the
receiver’s prediction (β= 0.08, p= .05; Table 1).
This is an important finding in its own right:
higher quality textual information boosts the
accuracy of those who receive it. But when we

divide our sample by expertise, we find that this
relation only holds for the higher expertise sub-
jects (high: β= 0.21, p= .046; low: β= 0.01, p=
.382). Interacting expertise with reason quality
shows similar results: The interaction is signifi-
cantly positive (interaction β = 0.19, p = .02),
indicating that the benefits of reason quality are
strongest for the most expert receivers. As a
robustness check, excluding the target receiver’s
own rating from the aggregate reason rating some-
what weakens these results: The signs remain the
same, but the effects fall below traditional signifi-
cance thresholds. More data would be needed to
clarify whether this is due to reduced N, or some
degree of reverse causation where high-expertise
subjects are indeed somewhat more likely to rate
reasonsmore highly. Overall, these results suggest
that experts are more selective in distinguishing
good from bad information, rather than everyone
being affected equally and the less accurate users
simply benefiting more in expectation.
In order to glean some insight into what spe-

cific features of these free-text treatments are
responsible for their benefits, we constructed a
number of automated measures of reason quality:
word count; average word length; count of num-
ber use; count of all-capitalized words; count of
questions; and count of URLs. Of these, URLs
and numbers appear to confer systematic benefits,
presumably because they contain concrete and
usable information (Table S3: M1). When split-
ting by expertise, only numbers are significant
and only for experts (Table S3, Models 2–3).
When interacting the significant features with
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Table 1
Effects of Reason’s User-Rated Quality on Accuracy

Independent variable

Dependent variable

Mean squared error accuracy

All High Low Interaction

Reason quality 0.084* 0.271** 0.007 0.337***
(0.051) (0.112) (0.093) (0.110)

Expertise 0.094
(0.083)

Expertise × Reason Quality 0.189**
(0.080)

Constant −1.093*** −1.081*** −0.946*** −0.917***
(0.051) (0.115) (0.098) (0.114)

Observations 2,204 404 440 844
R2 0.001 0.014 0.00001 0.013
Adjusted R2 0.001 0.012 −0.002 0.009

* p < .1. ** p < .05. *** p < .01.
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expertise, the only significant interaction is once
again with numbers, where the interaction is
positive: the more expert the user, the more
they are benefited by numbers shared within a
reason (Table S3: M4). Note that only 6% of the
reasons which had a number included the actual
unseen prediction. These results are robust to
excluding those observations. Of the URLs,
some pointed to websites with concretely useful
information such as prices, while others pointed
to more general websites such as CNN.com
(Cable News Network). None pointed to direct
answers since our prediction tasks were chosen to
not have knowable solutions. This may in part
explain why the indirect information in web
pages—which would need to be interpreted—
may benefit experts more than nonexperts. There
are many further ways to extend NLP techniques
to determine which features are associated with
higher rated reasons, but ourfindings here indicate
that in general experts are benefited only by higher
quality information, either as qualitatively rated by
peers, or containing concretely useful information
like numbers or websites.

Peer Effects on Collective Accuracy

If effects on individual accuracy are arguably of
more practical importance than direct effects on
predictions, of even greater practical importance
are the effects on group accuracy. Numerous
studies have shown that aggregating individual
predictions can outperform the accuracy of even
the most expert individuals, so the mediating
effect of expertise is most practically important
for aggregate predictions.

The Fickle Benefits of Expertise

Although we found that seeing a peer predic-
tion or a peer’s reason increases the receiver’s
individual accuracy on average, we found no
significant benefits for group accuracy. We had
16 questions each with equal numbers of treated
anduntreated respondents, so to test for differences
in group accuracy we averaged the predictions
in each of the 2 × 16 = 32 groups, calculated
the squared error between a group’s prediction and
the true outcome, and then conducted a paired
T test between the 16 treated group errors and 16
untreated group errors. The p value from that test
for the numeric treatment was 0.84, while the
p value for the text treatment was 0.26.

Since these tests involve only 16 paired ob-
servations, the statistical power to detect small
differences is weak, and thus this nonresult is
not in itself surprising. However, there are also
well-known substantive reasons why informa-
tion exchanges that help the average individual
may nevertheless harm, or leave unchanged,
collective accuracy. Peer communication has
sometimes been considered harmful to collec-
tive accuracy because it reduces group diversity
(Page, 2018) by reducing individual variance.
The “collective error” or error of the groupmean,
ðx̄ − μÞ2, is mathematically equal to the “average
individual error” 1

n

P ðxi − μÞ2minus the “group
diversity” 1

n

P ðxi − x̄Þ2. It was initially thought
that reducing group diversity via peer commu-
nication would therefore increase the collective
error (Lorenz et al., 2011), but this is now known
to bemistaken both empirically and theoretically
(Becker et al., 2017; Nobre & Fontanari, 2020):
reducing diversity via interpersonal communica-
tion will generally also lower the average individ-
ual error, and thus, would mathematically have
no net effect on collective accuracy.
But this line of reasoning is altered when the

effects of communication are asymmetrical with
respect to individual expertise. It is well-known
that aggregate predictions such as the weighted
mean, when weighted by expertise, can outper-
form simple averages (Budescu & Chen, 2015;
Jayles et al., 2017; Mannes et al., 2014; Mellers et
al., 2015; Tetlock & Gardner, 2016). But signals
whose effects vary with the expertise of the
receiver are equivalent to weighting by exper-
tise, as was shown in Equation 2: Experts will
weight their own predictions more, and thus, the
average of experts and nonexperts who have
exchanged peer information will weight the
expert predictions more. Thus, if low-expertise
subjects are affected by communication more
than high-expertise, this has a similar effect on
collective accuracy as directlyweighting experts
when constructing an aggregate—but without
need to directly weight, or indeed to even mea-
sure, expertise.
Previous work has empirically shown that de-

centralized groups can benefit from this implicit
reweighting (Becker et al., 2017). However, these
benefits appear highly sensitive to group size,
initial conditions, and information cascades
(Toyokawa et al., 2019). To illustrate how
the benefit to the group is sensitive to expertise
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responsivity even in the absence of cascades,
consider a simple example with two players.
One is an expert with initial prediction equal
to 0 (which is the truth, unbeknownst to either
player), and the other is a nonexpert with initial
prediction equal to 2. The “average individual
error,” that is, the mean of their two individual
squared errors is (02 + 22)/2 = 2, while the
“collective error,” or the squared error of the
group mean is 1; thus, as usual, the group mean
is more accurate than their predictions consid-
ered individually. If they both see the other’s
prediction and update their own prediction to
γ*own + (1 – γ)*other, the mean of the two
predictions remains the same regardless of γ,
and thus, the error of the group mean remains
the same. However, consider two cases where
there is a single exchange: in the first case the
expert and nonexpert are equally responsive,while
in the second case the expert is less responsive. In
Case (1), say that the mutual influence is such that
the expert updates to 1 if they see the nonexpert’s
prediction, and likewise for the nonexpert. Then,
the squared error of the group mean if the nonex-
pert sees the expert is one-fourth, the squared error
if the expert sees the nonexpert is 9/4, and the
expected value is therefore 10/8, or worse than
no information exchanged (=1). But in Case (2),
say that the nonexpert updates as before, but the
expert only updates half as much, to 0.5 upon
seeing the nonexpert’s prediction of 2. In that
case, the squared error if the nonexpert sees the
expert is 1/4, the squared error if the expert sees
the nonexpert is 25/16, and the expected value
is 29/32—that is, better than no information
exchanged (=1). Thus, whether the group is
benefited or harmed depends on group size,
number of exchanges, the distribution of initial
beliefs, and most importantly, the relative re-
sponsivity of experts versus nonexperts.
To examine these tradeoffs in a more realistic

setting, we constructed a simple simulation within
the context of our Bayesian framework. In this
simulation, we varied group size (N), the degree
to which persuasive effects vary with expertise
(Exp), and the number of exchanges among
between members. Each member receives a
permanent “expertise” level and initial prior
belief, where the higher the expertise, the closer
the initial belief is to the truth, and also the lower
σ21 and higher γ are for that individual. Exp = 0
means that all members have the same σ21 and

γ, while higher Exp values mean a wider range
of variation of individual expertise levels, with
some agents having low σ2 and high γ (more
expert) while others the reverse (less expert).
Members then sequentially and randomly receive
signals from each other, updating each time ac-
cording to Equation 3 (see SupplementalMaterial,
for details).
Figure 3 shows the difference in collective

accuracy between the pre- and postcommunica-
tion stages for various group sizes N, variance in
expert responsivity Exp, and numbers of ex-
changes. Values are differences in group mean
squared error between pre and post, normalized
by the mean squared error to give a sense of the
percentage improvement; values above 0 showan
improvement in accuracy between pre and post,
while those below 0 show a decline.When there
is no expertise-dependent sensitivity and everyone
responds equally (Exp = 0), peer communication
harms collective accuracy relative to the no-
communication baseline (red line). But when we
increase the variance in responsivity of experts
to peer information (Exp = 0.5), communication
improves accuracy over the baseline. Furthermore,
increasing the number of exchanges intensifies
these effects: Shifting from N total exchanges
per group (top) to 10 N exchanges (bottom)
increases both the harm and the help from infor-
mation exchange.
In our experimental setting, the number of

individuals per group (prediction problem) is
relatively high, the difference in responsivity
between experts and nonexperts is relatively
small, and the number of exchanges is on the
order of N, all of which put us closer to the no-
help regime. Additionally, the number of our
unique groups is small at 16: Running our sim-
ulation 16 times (instead of 2000, as shown)
yields confidence intervals that overlap 0 at all
N and Exp values (not shown). Practically, this
suggests that in many empirical settings, the
gains to collective wisdom due to the reduced
responsivity of experts may be only detectable
when the group is small, the number of ex-
changes within each group is high, and there
are many groups to analyze. In terms of design-
ing an improved mechanism for boosting group
accuracy, in general, one would not prefer a
smaller group since larger groups are more accu-
rate, but given a fixed group size determined by
one’s budget, these results suggest that additional
gains from expert responsivity might be found
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in (a) increasing the number of exchanges per
group or (b) increasing the differential expertise
effect, by making experts less responsive and/or
nonexperts more responsive. The latter could be
implemented either indirectly, by highlighting the
reputation of successful subjects, or directly, by
censoring the information sent from nonexperts
to experts.

Improving Group Accuracy

Although the natural boost to collective accu-
racy produced by the reduced responsivity of
experts to peer information may be fragile in
many settings, we can nevertheless improve
upon nature after the fact. The most common
approach is to reweight predictions based on
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Figure 3
Simulations Assessing the Effect of Group Size and Expert Responsivity on Group
Accuracy in the Presence of Peer Communication

Note. Each group has N individuals, and agents update according to Equation 3. Exp
determines the amount of variation in σ21 and γ, where Exp = 0 means there is no variation
in responsivity with expertise (all σ21 and γ are equal), while Exp = 0.5 means there is high
variation (some agents with high expertise, i.e., low σ21 and high γ, and others with the reverse).
See Supplemental Material for details. Top: Change in mean squared error (MSE), N exchanges,
as percentage of average MSE (ie, (MSEpre – MSEpost)/(MSEpre + MSEpost)/2. Bottom: 10 N
exchanges. Exp = expertise. See the online article for the color version of this figure.
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various observed features of the individuals,
such as demographics or treatment conditions
(Budescu & Chen, 2015; Kelley & Tetlock,
2013; Mannes et al., 2014; Mellers et al.,
2015; Moore et al., 2016). We tested the effects
on collective accuracy in two ways, first by
reweighting predictions by each individual fea-
ture separately, and then by reweighting using
all features at once using machine learning
methods. In both cases, we found that the best
weighting can increase collective accuracy by
about 10%, which is substantial, although less
than what is possible by simply increasing N
(since the collective error, like the standard error,
decreases with

ffiffiffiffi
N

p
).

As Figure 4 shows, taken individually, most
effective was to assign more weight to subjects
with higher age, education, and political knowl-
edge; also effective was to assign less weight to
questions answered later in the (random) sequence,
presumably due to subject fatigue with later ques-
tions. To weight all features jointly, we fed pre-
dictions, all covariates, and interactions between

the two into a two-layer neural network or a lasso
regression, both of which allow predictions to
interact with, and thus be effectively reweighted
by, all individual and task-level covariates. The
model was trained to maximize out-of-sample
group accuracy, where the omitted samples were
at the question level (i.e., the model was fit on
data from responses to eight questions and tested
oneight heldout questions,with repeatedquestion-
level resampling to generate bootstrapped errors).
As can be seen in Figure 5, before reweighting, the
expert group has about a 10% lower out-of-sample
error than the nonexpert group (Column 1 vs. 4).
However, after reweighting, the experts are unim-
proved, but the nonexperts become as accurate as
the experts (Columns 2–3 vs. 5–6). So, whether
reweighting by individual features or across all
features, the improvement is perhaps 10%. This
benefit, however, accrues mainly to the nonex-
perts, raising their collective accuracy to a level
comparable to experts—albeit “experts” only
insofar as they are in the upper half of the skill
distribution.
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Figure 4
The Effects on Aggregate Accuracy of Weighting Predictions by Individual Features
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However, our Bayesian framework also sug-
gests another method for improving collective
accuracy. Since treated subjects are strongly
affected by the anchor value they saw, and since
as our simulation shows, seeing a peer prediction
can in many cases be detrimental to collective
accuracy, we therefore hypothesized that peer-
affectedpredictions could ina sensebe“corrected”
back toward the original, unaffected prediction.
This is of course only possible because we know
the treatment values, but it does not require us to
know the pretreated predictions: If an individual’s
posttreatment position is a′ = (1 – γ)a + γb, then
their original, “corrected” position a = (a′ – γb)/
(1 – γ). Figure 6 shows the results on group
accuracy of debiasing all treated predictions
using γ values ranging from 0 to 1, with boot-
strapped errors. Pooling all treated subjects, the
boost to collective accuracy due to this correc-
tion again peaks at around 10%, at a γ = 0.4,
which is not far from our measured anchor effect
of 0.3. Dichotomizing by our usual measure
of expertise (accuracy in the first half of ques-
tions answered) leads to very large errors since it
requires throwing out half of all responses per
subject in addition to the 50% of subjects who
were not treated with a peer prediction, but
dichotomizing by our other expertise measure,
reasoning skill (accuracy on the three-question
test), shows that the more expert group is at
best only mildly improved, while the less-expert
group derives all the benefit. These differences

in improvement are presumably because the ex-
perts are less affected by peer information, and
possibly somewhat benefited by internal differ-
ences in responsivity (akin to the Exp = 0.25
regime in Figure 3), while the nonexperts and
group as a whole are more harmed by peer infor-
mation (akin to the Exp= 0.0 regime in Figure 3),
and thus have more room for improvement.
Note that because our treated subjects received

anchors from both previously treated subjects,
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Figure 5
Out-of-Sample Prediction Accuracy Using a Two-Layer Deep Neural Net and Lasso
Regression to Reweight Subject Predictions by All Measured Features
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Figure 6
Accuracy Improvement From “Correcting” Predic-
tions by Shrinking Each Toward the Question Mean
by the Specified Percentage (95% CIs From Boot-
strapped Standard Errors)
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and untreated subjects, the effective pool of
information for the anchored group is higher than
the unanchored group. This did not increase the
collective accuracy of the anchored group, and if
anything, it shouldmake it harder for the correction
procedure to improve collective accuracy, since in
effect the correction does away with treatment
information in restoring pretreatment predictions.
However, the harms due to intragroup communi-
cation appear to outweigh the benefits due to extra-
group information plus the benefits due to implicit
expert weighting, so our results suggest that in
purely intragroup communication, the correction
benefits may be even higher. Our correction in-
creases group accuracy in part by re-inflating
group variance,which is diminished by intragroup
communication: for example, for γ= 0.5, variance
is increased from a posttreatment value of 0.5–2.0,
versus 0.8 for the unanchored group. We hypoth-
esize that this re-inflation may be more effective
and less likely to overshoot when applied to a
purely intracommunicating group, but character-
izing analytically preciselywhat debiasing amount
will work best given subject expertise, belief dis-
tributions, persuasive effects, and expert respon-
sivity, is an important question for future work.

Discussion

The reduced responsivity of experts to peer
information and greater selectivity toward infor-
mation quality appear to be general properties of
expertise that hold for textual as well as numeri-
cal signals. Numerically, our Bayesian frame-
work provides a unified model in which experts
discount information according to two separate
processes: First, a generally increased discount-
ing of all information due to a higher confidence
in their own beliefs; and second, a tendency to
more steeply discount more distant information.
While previous work has demonstrated both of
these results in broad strokes, our real-world,
continuous-valued prediction task allows us to
precisely estimate a continuous response func-
tion and demonstrate its qualitative similarity to
our theoretical Bayesian framework.
Our results also show for the first time that these

discounting tendencies hold not just for numeric
communication, but also for linguistic communi-
cation: experts are less sensitive to textual informa-
tion overall, and also more selective toward higher
quality information. Previous numeric work has
necessarily left it somewhat ambiguous whether

the tendency of experts to more steeply discount
discordant information is due to a preference for
higher quality, or simply to a tendency to discount
any information in proportion to its distance from
the expert’s prior. Our textual results suggest that
it is indeed quality that experts are sensitive to.
Our experimental design also allows us to trace

the effects of peer information, and the mediating
effect of expertise, through to individual and
collective accuracy. While one might expect
that less-expert subjects would be most benefited
by peer communication, it is also possible that the
reduced sensitivity and increased selectivity of
experts to peer information could mean that more
expert subjects may in fact benefit more. We find
that these individual benefits very with both
expertise and information quality: While the
less-expert are indeed benefited more by numeric
and textual peer information overall, experts are
in fact benefited by the highest quality textual
information. Expert selectivitymeans that they do
benefit from communication even when much
of that information may be relatively poor. Our
result showing that experts benefit via selectively
responding to high-quality text is particularly
important, since with purely numerical informa-
tion, it is difficult for discounting alone to provide
individual benefits for experts.
Finally, when turning to aggregate, “wisdom

of the crowd” accuracy, our Bayesian framework
allows us to show both theoretically and via
simulation that the collective benefits are highly
sensitive to group size, number of exchanges,
prior distributions, and expert responsivity. In
our experimental setting, aggregate accuracy
was neither helped nor harmed by receiving peer
communication. Our simulations suggest that, in
addition tobeingdue toa small numberofgroups to
test (16), thismay also be due to the limited number
of exchanges and relatively lowdifference inexpert
responsivity in our experiment. Pragmatically, it
suggests that the implicit weighting of experts
due to their reduced responsivitymay be boosted
by increasing the number of exchanges, decreas-
ing expert responsivity via enhancing successful
reputations, and direct interventions to reduce
nonexpert to expert communication in cases
where expertise can be independentlymeasured.
Like others (Budescu&Chen, 2015; Luo et al.,

2018;Madirolas& de Polavieja, 2015;Mannes et
al., 2014;Mellers et al., 2015; Tetlock&Gardner,
2016), we also found that group accuracy could
be improved by reweighting individuals, either
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by individual features, or jointly across all features
using machine learning. This reweighting appears
to only help the less-expert group, raising its
collective accuracy to the level of the expert group.
However, our experimental design and Bayesian
framework also suggest a novel form of collective
improvement, by reconstructing each individual’s
(unseen) original prediction from their posttreat-
ment prediction and observed signal. The benefits
of this procedure have significant limitations
though: First, only the accuracy of the less-expert
group could be meaningfully improved, presum-
ably due to their higher overall responsivity.
Second, this procedure only benefits intragroup
communication: If most signals are coming from
outside the group, the harms of destroying that
information likely outweigh the benefits of
restoring unbiased predictions. And third, this
procedure canonlyworkwhen one has completely
tracked all signals exchanged by participants. The
third issue may not be as much of a problem in
the modern era though, where a prediction plat-
form can readily track every page a user sees.
In such areas, the primary benefit of this correc-
tion procedure would be to allow the social
benefits of communication—benefits without
which almost no real-world collaborative plat-
form can long survive—while at the same time,
restoring much of collective accuracy lost due to
that communication.
As discussed earlier, in order to achieve the

benefits of reweighting or prediction correction, it
is necessary to have an accurate, domain-specific
measure of expertise, not just a measure of general
knowledge or education (and self-assessment is if
anything anticorrelated with true expertise). But
perhaps surprisingly, even in our experimental
framework where the average subject answered
only eight questions, and therefore, the average
number of questions used to calculate “expertise”
was only four, this rough measure is sufficiently
strong to demonstrate themyriadmediating effects
of expertise. The effectiveness of this measure is
presumably in part due to our relatively large
subject pool, which allows us to identify small
but consistent effects, but it may also be due to
our continuous-valued prediction tasks, which
allow for far more variation per subject than
would, for example, using an aggregate of four
binary correctness scores.
The relative ease of measuring expertise, at

least roughly, implies that there may be many
practical opportunities to construct communication

structures that maximize collective accuracy, such
as those which only allow information flow from
experts to nonexperts, even if specific individuals
participate only briefly in the platform. Similarly,
as Figure 2 shows, nonexperts are hurt by being
asked to provide a reason (“Reason Requested”),
while experts are not, which suggests that an ideal
textual communication system may similarly
entail structuring the flow of information from
experts (who are not harmed by requesting rea-
sons) to nonexperts (who are harmed by requests
but benefit most from receiving information).
The weaker but similar mediating effects we

foundwith our simple three-question “reasoning
skill” measure also suggests that there may be
scope for developing better general-purpose
measures of expertise, at least with regards to
forecasting. This is an important target for future
work. But when expertise is not readily measur-
able, our results suggest that the benefits of
the natural upweighting of experts due to their
reduced responsivity can be maximized by
increasing the number of exchanges and by
boosting the variance in expert responsivity,
such as by diversifying the subject pool or
enhancing reputations. These structural changes
may provide many of the benefits of expert
weighting and hierarchical information flow
without the need to directly measure expertise
and may allow less-expert groups to enhance
their performance nearly to the level of experts.
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